We learn:

- The definition and interpretation as slope of partial derivatives.
- How to compute partial derivatives.
- Linear approximations to a function
- The tangent plane of a function of two variables
- The gradient of a function

In the book there are also some theoretical things:

- what it means to be differentiable
- Theorem 9 gives a condition a function to be differentiable.

Before we get started: review of the derivative of a function $f: R \rightarrow R$.

We know the derivative of f at the point a is

$$
f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- It represents the rate of change: how fast we are going.
- It provides a linear approximation to $f(x)$ near $\mathrm{x}=\mathrm{a}$.

$$
g(x)=f(a)+(x-a) f^{\prime}(a)
$$

approximates f.
It hal graph tangent to the graph of F

Definition of partial derivatives

To make things easier we start with a function $f: R \wedge n->R$
The (partial) derivative of $f\left(x _1, \ldots, x _n\right)$ with respect to variable $x _j$ at the point $\mathrm{a}=\left(\mathrm{a} _1, \ldots, a_{-} \mathrm{n}\right)$ is

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{1}+h, \ldots, a_{n}\right)}{\ldots f\left(a_{1}, \ldots, a_{n}\right)} \\
&=\left.\frac{\partial f}{\partial x_{1}}\right|_{x=a}
\end{aligned}
$$

Idea: we regard all variables other than x_j as constants and differentiate as usual with respect to $\mathrm{x}_{-} \mathrm{j}$.

Examples:
a. $f(x, y)=2 x-y$

$$
\frac{\partial f}{\partial x}=2 \quad \frac{\partial f}{\partial y}=-1
$$

The graph of f is the plane in $R \wedge 3$ that is the set of points $(x, y, 2 x-y)$. It is given by the equation $z=2 x-y$.
The partial derivatives are the slopes of this plane in the x and in the y directions.
b. The partial derivatives of $x^{\wedge} 3 y+x y^{\wedge} 2$ at the point $(1,2)$.

$$
\frac{\partial f}{\partial x}=3 x^{2} y+y^{2}
$$

Pre-class Warm-up !!

Let $f(x, y)=5 x y^{\wedge} 4+x^{\wedge} 2 \sin (y)+y$
What is $\partial \mathrm{f} / \partial \mathrm{x}$?
a. $5 y^{\wedge} 4+2 x \sin (y)$
b. $5 y^{\wedge} 4+2 x \sin (y)+1$
c. $20 y^{\wedge} 3+2 x \cos (y)+1$
d. The question doesn't mean anything, because we only know how to find the partial derivative of f at a point, and no point is given.
e. None of the above.

$$
\left.\frac{\partial f}{\partial x}\right|_{(1,2)}=5 \cdot 2^{4}+2 \cdot 1 \cdot \sin (2)
$$

Linear approximation to f near a point

$$
a \in \mathbb{R}^{n} a=\left(a_{1}, \ldots, a_{n}\right)
$$

$$
\begin{aligned}
g\left(x_{-} 1\right. & \left., \ldots, x_{-} n\right)=f\left(a_{-} 1, \ldots, a_{-} n\right)+ \\
& +\frac{\partial f}{\partial x_{1}}(a)\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(a)\left(x_{2}-a_{2}\right)+\cdots \\
& +\frac{\partial f}{\partial x_{n}}(a)\left(x_{n}-a_{n}\right)
\end{aligned}
$$

$=z \quad$ gives the equation of the tangent space. new variable

The graph of the linear approximation is a linear space tangent to the graph of f at the point a.

The matrix of partial derivatives
Component
Coordinate functions:
So far we did functions $f: R \wedge n->R$.
Now we do $f: R \wedge n->R \wedge m$
Example $f(s, t)=s(1,2,3)+t \wedge 2(1,0,-1)$.
This f is made up of 3 functions $R \wedge 2 \rightarrow R$

$$
\begin{aligned}
& \text { Here } f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
& \begin{aligned}
f(s, t) & =\left(s+t^{2}, 2 s, 3 s-t^{2}\right) \\
\Rightarrow & \left(f_{1}(s, t), f_{2}(s, t), f_{3}(s, t)\right.
\end{aligned} \\
& f_{1}(s, t)=s+t^{2} \quad f_{2}(s, t)=2 s \\
& f_{3}(s, t)=3 s-t^{2}
\end{aligned}
$$

We can do $\frac{\partial f_{3}}{\partial t} \leftrightharpoons-2 t$

We make a matrix of partial derivatives where the (i, j) entry is $\partial \mathrm{f}_{\mathrm{z}} \mathrm{i} / \partial \mathrm{x} _\mathrm{j}$

This matrix is called the derivative (matrix) of f, or the Jacobian matrix of f.

Definition of differentiability

Functions might not be differentiable everywhere. The official definition for $f: R \wedge n \rightarrow R \wedge m$ to be differentiable at a point a in $R \wedge n$ is as follows.

Let $D(a)$ be the derivative matrix of f at a. Then f is differentiable at a if $D(a)$ exists and also

$$
\begin{aligned}
& \text { matrix - vector } \\
& \lim _{x \rightarrow a} \frac{\|f(x)-f(a)-D f(a) \cdot(x-a)\|}{\|x-a\|}=0 \\
& \text { Example } f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& \begin{array}{l}
D=\left(\frac{\partial f}{\partial x_{1}} \cdots \cdot \frac{\partial f}{\partial x_{n}}\right) \\
D f(a) \cdot\left[\begin{array}{c}
x_{1}-a_{1} \\
\vdots \\
x_{n}-a_{n}
\end{array}\right]=\frac{\partial f}{\partial x_{1}}\left(x_{1}-a_{1}\right)+\cdots+\frac{\partial f}{\partial x_{n}}\left(x_{n}-a_{n}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The function matux vector } \\
& g(x)=f(a)+D f(a)(x-a) \\
& \text { is the best linear approximation to } f \text { near a. }
\end{aligned}
$$

Theorem 8: If f is differentiable at a then f is continuous at a.

Theorem 9: If all the partial derivatives $\partial f _i / \partial x _j$ exist and are continuous near a then f is differentiable at a.

In the book they also define the gradient of a function $f: R \wedge n \rightarrow R$ but do not explain why. Their notation confuses row vectors and the column vectors used in matrix multiplication.

$$
\begin{aligned}
& \mathbb{F} \mathbb{R}_{i}^{n} \rightarrow \mathbb{R} \\
& \operatorname{gradf}=\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial \times n_{1}}
\end{array}\right]-a \text { vector }
\end{aligned}
$$

In the book they also define the gradient of a function $f: R \wedge n \rightarrow R$ but do not explain why. Their notation confuses row vectors and the column vectors used in matrix multiplication.

Example. Find the gradient of $f(x, y)=x^{\wedge} 2 y-x y^{\wedge} 2$ at the point $(1,-1)$

The gradient of f at a is the vector

What is the slope of the graph of $f(x, y)$
$=2 x-y+5$ in the direction of increasing x at the point $(1,3)$?
The graph is $z=2 x-y+5$
a. 1
b. $2=\frac{\partial f}{\partial x}(1,3)=2$
c. 3

Example. Let $f(x, y)=3 x y^{\wedge} 2+x^{\wedge} 3+1$
a. Find the equation of the tangent plane to the graph of f at $(x, y)=(1,-1)$.
b. Use the linear approximation of f around $(x, y)=(1,-1)$ to approximate $f(0.9,-1.1)$.
Solution a It is

$$
\begin{aligned}
& z=\frac{\partial f}{\partial x}(1,-1) \cdot x+\frac{\partial f}{\partial y}(1,-1) y+D \\
& \approx 6 \cdot x-6 y+D \\
& f(1,-1)=5=6 \cdot 1-6(-1)+D \\
& D=-7
\end{aligned}
$$

$$
\begin{aligned}
& g(x, y)=6(x-1)-6(y+1)+5 \\
& g(0.9,-1.1)=
\end{aligned}
$$

